Exemplar Problems

\mathbb{Q} . **54** Calculate the energy and frequency of the radiation emitted when an electron jumps from n=3 to n=2 in a hydrogen atom.

Ans. In hydrogen spectrum, the spectral lines are expressed in term of wave number \overline{v} obey the following formula

or,
$$\lambda = \frac{1}{v} = \frac{1}{15232.9} = 6.564 \times 10^{-5} \text{cm}$$
 Wavelength,
$$\lambda = 6.564 \times 10^{-7} \text{ m}$$
 Energy,
$$E = \frac{hc}{\lambda}$$

$$= \frac{6.626 \times 10^{-34} \text{ Js} \times 3.0 \times 10^8 \text{ ms}^{-1}}{6.564 \times 10^{-7} \text{ m}}$$

$$= 3.028 \times 10^{-19} \text{ J}$$

$$v = \frac{c}{\lambda} = \frac{3.0 \times 10^8 \text{ ms}^{-1}}{6.564 \times 10^{-7} \text{ m}}$$

$$= 0.457 \times 10^{15} \text{ s}^{-1} = 4.57 \times 10^{14} \text{s}^{-1}$$

Note When an electron returns from n_2 to n_1 state, the number of lines in the spectrum will be equal to $\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2}$.